

 1

Laptop Orchestras and Machine Learning in Real-time
Music Performance

Rebecca Fiebrink1, Perry Cook1,2, Scott Smallwood2, Dan Trueman2, and Ge Wang3
1Departments of Computer Science and 2Music, Princeton University

3Center for Computer Research in Music and Acoustics, Stanford University
{fiebrink, prc, skot, dtrueman}@princeton.edu, ge@ccrma.stanford.edu

INTRODUCTION
Computational support of creativity is a core concern of our
daily work, as researchers and musicians working in
computer music. We are enthusiastic about the prospect of
attending the Computational Creativity Support workshop
at CHI 2009, both to share our work on laptop orchestras
and real-time machine learning in music performance, and
to explore common ground with participants from creative
domains, HCI, and machine learning backgrounds.

BACKGROUND OF TOPICS AND AUTHORS

PLOrk and SLOrk
All authors have been deeply involved in the Princeton
Laptop Orchestra1, or PLOrk, an ensemble of computer-
based musical meta-instruments founded by Princeton
professors Perry Cook and Dan Trueman in 2005. The
“inherent impossibility” of pairing laptops and the
traditional orchestra performance paradigm challenges us to
address anew the role of technology in collaborative music-
making, beyond the constraints of a standard repertoire,
performance practice, or even a pre-existing understanding
of how to define a laptop orchestra [9].

In PLOrk, the ensemble is comprised of undergraduate and
graduate students who act as performers, researchers,
composers, and software developers, exploring ways in
which the computer can be integrated into conventional
music-making contexts—such as chamber ensembles or
jam sessions—while radically transforming those contexts.
Ge Wang completed his PhD at Princeton and moved to the
Stanford Center for Computer Research in Music and
Acoustics, founding the Stanford Laptop Orchestra2
(SLOrk) in the spring of 2008. We have also collaborated
with colleagues around the world, who have started the
Oslo Laptop Orchestra, the Boulder Laptop Orchestra
(BLOrk), and others, many of them modeled after PLOrk.

The roles of the composer, conductor (which may be a
human, a laptop, or neither, and is often partially or entirely
algorithmically driven), performers, and software vary

1 See http://plork.cs.princeton.edu/ for additional information,
audio, video, and press.
2 http://slork.stanford.edu/

dramatically among our laptop orchestra pieces. For
example, in Non-specific Gamelan Taiko Fusion3, each
laptop performer employs a graphical interface to specify
the temporal positioning and instrumentation of a set of
percussive sounds, a human conductor instructs the
performers to choose specific instrument subsets and
temporal densities, and the laptops probabilistically trigger
each performer’s sounds and synchronize the ensemble in
time. In Joy of Chant4, performers employ joysticks to
continuously control parameters of a singing synthesis
algorithm, and the laptops “sing” a conducted, two-part
chorale, which is scored using traditional music notation. In
In/Still5, each performer is individually responsible for
controlling sound parameters, and synthesis is also driven
by sensor data collected from a human conductor/dancer in
real time.

Many laptop orchestra pieces employ software written in
the ChucK music programming language, designed by Ge
Wang and Perry Cook [12]. The software may therefore be
reprogrammed “on-the-fly” during a performance, using a
practice called “live-coding” [13], which means that the
algorithms and programming language themselves become
real-time vehicles for musical expression and
improvisation. TBA6 is one piece that uses this approach.

Thus, PLOrk and SLOrk call for composers and performers
to dynamically exercise algorithmic creativity at numerous
interdependent levels, including the synthesis algorithms
used to create sounds “from scratch,” signal processing
algorithms used to modify pre-recorded sounds, algorithms
for creating low- and high-level musical structures,
algorithms governing the relationships of laptop performers
to each other (e.g., enforcing synchronization or turn-
taking), and algorithms specifying the relationship of live
sensor data (e.g., accelerometers held in performers’ hands,
or Wiimotes) to low- and high-level musical structures and
synthesis. The choice of algorithms, whether they are
deterministic or stochastic, the computational resources

3 Video at http://plork.cs.princeton.edu/video/non-specific.mov
4 Audio at http://plork.cs.princeton.edu/listen/winter/chant.mp3
5 Video at http://music.princeton.edu/~jfontein/northwesternspring
festival/instill
6 Audio at http://plork.cs.princeton.edu/listen/spring/tba.mp3

they demand, the extent to which the algorithms or their
parameters are controllable by human performers or a
conductor in real-time, and the manner in which this control
is exposed, are fundamentally both compositional and
technical questions that we must address appropriately as
we strive to create musical experiences that are compelling
and meaningful to the performers and the audience [8].
While one avenue of work addresses these questions with
regard to a general, emerging laptop orchestra performance
paradigm, such work is complicated by the fact that the
algorithmic choices made by composers and performers
vary widely among pieces and performances, and a
particular algorithmic approach may become crucial to the
identity of a particular piece, performance, or software
“instrument.”

Another key concern in our formative and ongoing work
with the laptop orchestra is the development of hardware
and software interfaces that performers can easily learn to
play, and that also afford musical expressivity. Cook and
Trueman have been exploring musical interface design for
novices and experts since many years before the formation
of PLOrk [1,10].

Machine Learning for Real-Time Laptop Performance
Machine learning is a standard tool in computer-aided
analysis of music. Audio analysis in particular presents a
challenge without the aid of machine learning, in that there
exists a “semantic gap” [7] between musically meaningful
properties (e.g., notes, harmony, rhythm, instrumentation)
and the low-level features that can be computed directly
from audio samples (e.g., time- and spectral-domain
statistics). Classification presents a useful paradigm for
translating from low-level features into higher-level
concepts such as instrumentation, pitch [3], or genre [11].
Classification systems may be interesting in their own right,
for example to provide instrumentation or genre labels to a
piece of audio, or they may be integrated into systems for
music recommendation or visualization [15]. The field of
music information retrieval (MIR), at the focus of the
ISMIR conference, has in the past nine years come to
represent the state of the art in machine learning applied to
music, including audio and other types of music data.

In MIR, machine learning approaches to audio analysis are
typically applied to recorded audio, and much less
frequently to live audio. One barrier to the application of
MIR approaches to real-time performance contexts is the
paucity of general tools that support learning, audio
analysis, and audio creation in real-time, within the same
framework. Therefore, most systems that incorporate
machine learning into real-time music contexts have been
built from scratch to solve a single problem, such as real-
time accompaniment of an acoustic instrument. Such
systems do not provide general tools that can be modified
or extended to different contexts or learning problems.

Rebecca Fiebrink and Perry Cook have a background of
research in music information retrieval, particularly in the
application of machine learning to audio analysis; Cook
supervised some of the first work on audio genre
classification [11], and Fiebrink has studied genre
classification [4,2] and classification-based music
recommendation and visualization systems. Fiebrink,
Wang, and Cook’s combined interest in music analysis and
live performance has led them to recent work on creating a
general platform for real-time audio analysis and applied
machine learning, in the ChucK programming language
[14,5,6]. Their recently released toolkit, the Small Music
Information Retrieval toolKit (SMIRK)7, provides support
for real-time extraction of time- and spectral-domain
features and the use of standard classifier algorithms, within
ChucK. As a result, ChucK can be used to implement many
standard MIR algorithms for audio classification.

Most interestingly, SMIRK allows musicians to employ
classifiers in real-time—it is possible (and quite effective
for many problems) to supply a classifier with labeled
training examples in real-time, during a rehearsal or during
a performance. For example, to create a ChucK program
that produces different computer accompaniment according
to whether a flute or a trumpet is playing along, a user can
quickly supply training examples of both instruments upon
arriving in a new performance space, so that instrument
discrimination is optimized for the particular acoustics of
the space. Once the classifier is trained, the user can add
code to trigger the appropriate accompaniment based on
classifier predictions made in real-time. The user can
supply additional training examples, perhaps even during a
performance, to improve classifier accuracy and
compensate for unanticipated inputs, for example, a noisy
audience in the background, or the use of different timbres
by the instrumentalists. Furthermore, it is possible for the
musician programmer to exercise control over any aspect of
learning on-the-fly—changing classifier parameters,
classifier choice, audio features, choice of classes, or even
the classifier implementation itself—using ChucK’s live-
coding infrastructure.

Our most recent work applies on-the-fly learning to an even
broader set of performance data, including performer
gestures using commodity gaming controllers, custom
sensors, and computer vision features extracted from
webcams, as well as audio inputs. On-the-fly learning can
be used to interactively build a mapping from the desired
inputs to the desired synthesis parameters, allowing a
composer or performer to construct a new “instrument” to
play computer music. During the performance of the
composition nets 08, performers interactively train neural
networks to build increasingly complex and personalized

7 Code and examples at http://smirk.cs.princeton.edu/
8 Video at http://www.cs.princeton.edu/~fiebrink/nets0/

 3

instruments using the controller of their choice (including
joysticks, webcams, and custom sensors).

In summary, we believe that “on-the-fly learning” is a
compelling new way to build interactions between
computers and human performers, allowing a computer to
base its actions on whatever high-level, musically
meaningful concepts that human musicians decide are
relevant at any given moment.

TOPICS FOR EXPLORATION
In this section, we enumerate several topics that arise at the
heart of our work with laptop orchestras and real-time
machine learning. Our current technical and creative work
explores some of these issues, and we are very interested in
how other workshop attendees confront similar issues, and
in what insights others may offer from their expertise in
more traditional machine learning and interface design
domains.

Real-time Interaction with Algorithms
We are not interested in “algorithmic composition” in the
traditional sense, which leaves little creative agency to the
human after a generative algorithm has been constructed,
but rather in real-time performance wherein humans apply
their expertise and creativity through their interactions with
software. In our music, the composer might specify the
framework within which humans exercise control,
including the algorithms used at different levels of music
creation, the parameters that are exposed to users, and the
interfaces through which users can control these
parameters. The conductor and performers might then
create music by expressively acting within this framework
over the performance of the piece. “Creators” and “users”
may have analogous roles with respect to algorithms in
other domains. Therefore, a set of general questions
regarding computational creativity in real-time domains
includes:

• What commonalities exist in issues of interface design
for real-time creative systems? We define “interfaces”
broadly, including software, hardware, and programming
languages. Issues of interest include the design of
methodologies for characterizing and evaluating
interfaces, designing interfaces for varying degrees of
task specificity (e.g., designing an “instrument” that can
be played in different styles and contexts, versus a
“piece” that is played just one way), and designing
interfaces for users with varying expertise. The
International Conference on New Interfaces for Musical
Expression, or NIME, treats this topic in the domain of
music, but we know of no venue to explore this across
disciplines.

• What commonalities exist in the process of creating
interactive, real-time experiences (analogous to the
musical composition and software design processes for

musical performance)? What tools and techniques do
others use in their respective domains?

• What fundamental HCI techniques may be of use in
characterizing and designing algorithms for real-time
interactive contexts? For example, to what extent might
we talk about the affordances of algorithms in such
contexts? Different algorithms may accomplish similar
computational goals (e.g., solving an equation,
producing a trained classifier) but afford different control
parameters and interaction styles to a user, particularly in
a creative, real-time context. Algorithmic distinctions
may significantly impact the user experience regardless
of any overlying user interface (whether that interface is
a GUI, live-coding programming language, or other). For
example, classifiers such as AdaBoost or support vector
machines require a distinct training phase to produce a
prediction rule, whereas “lazy” learners such as k-
nearest-neighbor do not. In our experience, when
employing a classifier to learn a concept “on-the-fly,”
this distinction can become important; it may be that a
user prefers to use a lazy learner even at the expense of
lower accuracy and slower predictions, in order to forego
the wait for classifier training each time he or she adds
more examples and observes classifier performance.
That is, the user experience is impacted by aspects of
algorithms that are not of concern to standard analysis
(e.g., time complexity or accuracy bounds); this suggests
that we might draw on HCI principles to analyze and
augment standard algorithms, and even design new
algorithms, for real-time interactive contexts.

Real-time and On-the-Fly Learning
On-the-fly, real-time learning is of particular interest to us
for several reasons. As discussed in the previous section, it
gives us a new perspective on standard algorithms, applied
in a new context with constraints and goals very different
from those the algorithm designers may have had in mind.
An ideal on-the-fly, real-time learning interface might have
the following properties:

• The user has access to timely and meaningful feedback
about a classifier’s performance (e.g., how long a
training round might take, what sort of errors the
classifier is likely to make), so that he/she may employ
this information to make rational choices regarding the
classifier and parameters.

• The user has the ability to dynamically exercise
meaningful control over the classification process, for
example by specifying limits on training time in
exchange for a tradeoff in accuracy, providing additional
training data and re-weighting training examples to fine-
tune classifier performance, and providing on-line
feedback on classifier performance, all using an interface
that is appropriate for real-time use.

• Both expert and novice users are able to interact
effectively with the system, regardless of the extent of
their machine learning knowledge.

Some of the above properties could be supplied by novel
user interfaces for visualization and control, some suggest
enhancements to existing algorithms such as the addition of
new parameters, and some may suggest new algorithms.
Certain ideas are reflected in current theoretical work in
machine learning (e.g., work on on-line and adaptive
learning, or learning with concept drift), and we’d be
excited to talk with participants with more traditional
machine learning backgrounds who might see connections
with current research. We would also like to engage with
other machine learning practitioners working in creative
domains who are confronting similar ideas, or who are
interested in exploring them more deeply.

Interfaces and Toolkits
Finally, we have a general interest in interacting with others
who develop software and hardware interfaces for real-
time, creative human-computer interactions. We will be
happy to discuss and/or demonstrate hardware and software
interfaces and toolkits that we have made for music
performance. Furthermore, several questions may be very
interesting to address in a cross-disciplinary manner,
including: How are interfaces for real-time, creative tasks
unique from non-real-time and non-creative tasks? To what
extent can we use standard toolkits and methodologies, and
to what extent must we create our own? How can interfaces
best support expressivity? improvisation? How can
interfaces support real-time creative collaboration among
humans, in both performative contexts (such as the laptop
orchestra) and offline contexts (such as collaborating to
compose new pieces)? What role should learning and
adaptation play, if any, in creating interfaces that are
customized to individual users possessing different
capabilities and levels of expertise?

COLLABORATIONS AND INSPIRATIONS
In summary, we welcome the opportunity to collaborate
and brainstorm with people experimenting with real-time
learning and/or live coding in other domains, people who
love designing new learning algorithms for unique domains
and seeing them applied, people who are interested in
design aspects around live performance hardware and
software, and people who like thinking deeply about HCI
aspects of algorithms and machine learning in real-time,
creative contexts. In turn, we offer ourselves as a group of
people with extensive experience in computer music
performance and composition, music interface design, and
applied machine learning, and who have strong ties to the
music-specific research communities in these areas.

REFERENCES
1. Cook, P., “Principles for designing computer music

controllers,” ACM CHI Workshop in New Interfaces for
Musical Expression (NIME), 2001.

2. DeCoro, C., Z. Barutcuoglu, and R. Fiebrink, “Bayesian
aggregation for hierarchical genre classification,” Proc.
International Conference on Music Information
Retrieval (ISMIR), 2007.

3. Ellis, D. P. W., and G. E. Poliner, “Classification-based
melody transcription,” Machine Learning 65:439–56,
2006.

4. Fiebrink, R. “An exploration of feature selection as a
tool for optimizing musical genre classification,” MA
Thesis, McGill University, 2006.

5. Fiebrink, R., G. Wang, and P. R. Cook, “Foundations
for on-the-fly learning in the ChucK programming
language,” Proc. International Computer Music
Conference (ICMC), 2008.

6. Fiebrink, R., G. Wang, and P. R. Cook, “Support for
MIR prototyping and real-time applications in the
ChucK programming language,” Proc. International
Conference on Music Information Retrieval (ISMIR),
2008.

7. Lew, M. S., N. Sebe, C. Djeraba, and R. Jain, “Content-
based multimedia information retrieval: State of the art
and challenges,” ACM Trans. Multimedia Computing,
Communications, and Applications, 2(1): 1–19, 2006.

8. Smallwood, S., D. Trueman, G. Wang, and P. Cook,
“Composing for laptop orchestra,” Computer Music
Journal, Spring 2008, 32(1): 9–25.

9. Trueman, D., “Why a laptop orchestra?” Organised
Sound, 2007, 12(2): 171–9.

10. Trueman, D., and P. Cook, “BoSSA: The deconstructed
violin reconstructed,” Journal of New Music Research
29(2), 2000.

11. Tzanetakis, G., and P. R. Cook, “Musical genre
classification of audio signals,” IEEE Trans. Speech and
Audio, July 2002.

12. Wang, G., and P. R. Cook, “ChucK: A concurrent, on-
the-fly audio programming language,” Proc.
International Computer Music Conference (ICMC),
2003.

13. Wang, G., and P. R. Cook, “On-the-fly programming:
Using code as an expressive musical instrument,” Proc.
International Conference on New Interfaces for Musical
Expression (NIME), 2004.

14. Wang, G., R. Fiebrink, and P. R. Cook, “Combining
analysis and synthesis in the ChucK programming
language,” Proc. International Computer Music
Conference (ICMC), 2007.

15. West, K., S. Cox, and P. Lamere, “Incorporating
machine-learning into music similarity estimation,”
Proc. ACM Multimedia, 2006.

