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INTRODUCTION 
Computational support of creativity is a core concern of our 
daily work, as researchers and musicians working in 
computer music. We are enthusiastic about the prospect of 
attending the Computational Creativity Support workshop 
at CHI 2009, both to share our work on laptop orchestras 
and real-time machine learning in music performance, and 
to explore common ground with participants from creative 
domains, HCI, and machine learning backgrounds. 

BACKGROUND OF TOPICS AND AUTHORS 

PLOrk and SLOrk 
All authors have been deeply involved in the Princeton 
Laptop Orchestra1, or PLOrk, an ensemble of computer-
based musical meta-instruments founded by Princeton 
professors Perry Cook and Dan Trueman in 2005. The 
“inherent impossibility” of pairing laptops and the 
traditional orchestra performance paradigm challenges us to 
address anew the role of technology in collaborative music-
making, beyond the constraints of a standard repertoire, 
performance practice, or even a pre-existing understanding 
of how to define a laptop orchestra  [9].  

In PLOrk, the ensemble is comprised of undergraduate and 
graduate students who act as performers, researchers, 
composers, and software developers, exploring ways in 
which the computer can be integrated into conventional 
music-making contexts—such as chamber ensembles or 
jam sessions—while radically transforming those contexts. 
Ge Wang completed his PhD at Princeton and moved to the 
Stanford Center for Computer Research in Music and 
Acoustics, founding the Stanford Laptop Orchestra2 
(SLOrk) in the spring of 2008. We have also collaborated 
with colleagues around the world, who have started the 
Oslo Laptop Orchestra, the Boulder Laptop Orchestra 
(BLOrk), and others, many of them modeled after PLOrk. 

The roles of the composer, conductor (which may be a 
human, a laptop, or neither, and is often partially or entirely 
algorithmically driven), performers, and software vary 

                                                             
1 See http://plork.cs.princeton.edu/ for additional information, 
audio, video, and press. 
2 http://slork.stanford.edu/ 

dramatically among our laptop orchestra pieces. For 
example, in Non-specific Gamelan Taiko Fusion3, each 
laptop performer employs a graphical interface to specify 
the temporal positioning and instrumentation of a set of 
percussive sounds, a human conductor instructs the 
performers to choose specific instrument subsets and 
temporal densities, and the laptops probabilistically trigger 
each performer’s sounds and synchronize the ensemble in 
time. In Joy of Chant4, performers employ joysticks to 
continuously control parameters of a singing synthesis 
algorithm, and the laptops “sing” a conducted, two-part 
chorale, which is scored using traditional music notation. In 
In/Still5, each performer is individually responsible for 
controlling sound parameters, and synthesis is also driven 
by sensor data collected from a human conductor/dancer in 
real time.  

Many laptop orchestra pieces employ software written in 
the ChucK music programming language, designed by Ge 
Wang and Perry Cook [12]. The software may therefore be 
reprogrammed “on-the-fly” during a performance, using a 
practice called “live-coding” [13], which means that the 
algorithms and programming language themselves become 
real-time vehicles for musical expression and 
improvisation. TBA6 is one piece that uses this approach. 

Thus, PLOrk and SLOrk call for composers and performers 
to dynamically exercise algorithmic creativity at numerous 
interdependent levels, including the synthesis algorithms 
used to create sounds “from scratch,” signal processing 
algorithms used to modify pre-recorded sounds, algorithms 
for creating low- and high-level musical structures, 
algorithms governing the relationships of laptop performers 
to each other (e.g., enforcing synchronization or turn-
taking), and algorithms specifying the relationship of live 
sensor data (e.g., accelerometers held in performers’ hands, 
or Wiimotes) to low- and high-level musical structures and 
synthesis. The choice of algorithms, whether they are 
deterministic or stochastic, the computational resources 
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5 Video at http://music.princeton.edu/~jfontein/northwesternspring 
festival/instill 
6 Audio at http://plork.cs.princeton.edu/listen/spring/tba.mp3 



 

 

they demand, the extent to which the algorithms or their 
parameters are controllable by human performers or a 
conductor in real-time, and the manner in which this control 
is exposed, are fundamentally both compositional and 
technical questions that we must address appropriately as 
we strive to create musical experiences that are compelling 
and meaningful to the performers and the audience [8]. 
While one avenue of work addresses these questions with 
regard to a general, emerging laptop orchestra performance 
paradigm, such work is complicated by the fact that the 
algorithmic choices made by composers and performers 
vary widely among pieces and performances, and a 
particular algorithmic approach may become crucial to the 
identity of a particular piece, performance, or software 
“instrument.” 

Another key concern in our formative and ongoing work 
with the laptop orchestra is the development of hardware 
and software interfaces that performers can easily learn to 
play, and that also afford musical expressivity. Cook and 
Trueman have been exploring musical interface design for 
novices and experts since many years before the formation 
of PLOrk [1,10].  

Machine Learning for Real-Time Laptop Performance 
Machine learning is a standard tool in computer-aided 
analysis of music. Audio analysis in particular presents a 
challenge without the aid of machine learning, in that there 
exists a “semantic gap” [7] between musically meaningful 
properties (e.g., notes, harmony, rhythm, instrumentation) 
and the low-level features that can be computed directly 
from audio samples (e.g., time- and spectral-domain 
statistics). Classification presents a useful paradigm for 
translating from low-level features into higher-level 
concepts such as instrumentation, pitch [3], or genre [11]. 
Classification systems may be interesting in their own right, 
for example to provide instrumentation or genre labels to a 
piece of audio, or they may be integrated into systems for 
music recommendation or visualization [15]. The field of 
music information retrieval (MIR), at the focus of the 
ISMIR conference, has in the past nine years come to 
represent the state of the art in machine learning applied to 
music, including audio and other types of music data.  

In MIR, machine learning approaches to audio analysis are 
typically applied to recorded audio, and much less 
frequently to live audio. One barrier to the application of 
MIR approaches to real-time performance contexts is the 
paucity of general tools that support learning, audio 
analysis, and audio creation in real-time, within the same 
framework. Therefore, most systems that incorporate 
machine learning into real-time music contexts have been 
built from scratch to solve a single problem, such as real-
time accompaniment of an acoustic instrument. Such 
systems do not provide general tools that can be modified 
or extended to different contexts or learning problems. 

Rebecca Fiebrink and Perry Cook have a background of 
research in music information retrieval, particularly in the 
application of machine learning to audio analysis; Cook 
supervised some of the first work on audio genre 
classification [11], and Fiebrink has studied genre 
classification [4,2] and classification-based music 
recommendation and visualization systems. Fiebrink, 
Wang, and Cook’s combined interest in music analysis and 
live performance has led them to recent work on creating a 
general platform for real-time audio analysis and applied 
machine learning, in the ChucK programming language 
[14,5,6]. Their recently released toolkit, the Small Music 
Information Retrieval toolKit (SMIRK)7, provides support 
for real-time extraction of time- and spectral-domain 
features and the use of standard classifier algorithms, within 
ChucK. As a result, ChucK can be used to implement many 
standard MIR algorithms for audio classification.  

Most interestingly, SMIRK allows musicians to employ 
classifiers in real-time—it is possible (and quite effective 
for many problems) to supply a classifier with labeled 
training examples in real-time, during a rehearsal or during 
a performance. For example, to create a ChucK program 
that produces different computer accompaniment according 
to whether a flute or a trumpet is playing along, a user can 
quickly supply training examples of both instruments upon 
arriving in a new performance space, so that instrument 
discrimination is optimized for the particular acoustics of 
the space. Once the classifier is trained, the user can add 
code to trigger the appropriate accompaniment based on 
classifier predictions made in real-time. The user can 
supply additional training examples, perhaps even during a 
performance, to improve classifier accuracy and 
compensate for unanticipated inputs, for example, a noisy 
audience in the background, or the use of different timbres 
by the instrumentalists. Furthermore, it is possible for the 
musician programmer to exercise control over any aspect of 
learning on-the-fly—changing classifier parameters, 
classifier choice, audio features, choice of classes, or even 
the classifier implementation itself—using ChucK’s live-
coding infrastructure.  

Our most recent work applies on-the-fly learning to an even 
broader set of performance data, including performer 
gestures using commodity gaming controllers, custom 
sensors, and computer vision features extracted from 
webcams, as well as audio inputs. On-the-fly learning can 
be used to interactively build a mapping from the desired 
inputs to the desired synthesis parameters, allowing a 
composer or performer to construct a new “instrument” to 
play computer music. During the performance of the 
composition nets 08, performers interactively train neural 
networks to build increasingly complex and personalized 
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8 Video at http://www.cs.princeton.edu/~fiebrink/nets0/ 



 

 3 

instruments using the controller of their choice (including 
joysticks, webcams, and custom sensors).  

In summary, we believe that “on-the-fly learning” is a 
compelling new way to build interactions between 
computers and human performers, allowing a computer to 
base its actions on whatever high-level, musically 
meaningful concepts that human musicians decide are 
relevant at any given moment. 

TOPICS FOR EXPLORATION 
In this section, we enumerate several topics that arise at the 
heart of our work with laptop orchestras and real-time 
machine learning. Our current technical and creative work 
explores some of these issues, and we are very interested in 
how other workshop attendees confront similar issues, and 
in what insights others may offer from their expertise in 
more traditional machine learning and interface design 
domains. 

Real-time Interaction with Algorithms 
We are not interested in “algorithmic composition” in the 
traditional sense, which leaves little creative agency to the 
human after a generative algorithm has been constructed, 
but rather in real-time performance wherein humans apply 
their expertise and creativity through their interactions with 
software. In our music, the composer might specify the 
framework within which humans exercise control, 
including the algorithms used at different levels of music 
creation, the parameters that are exposed to users, and the 
interfaces through which users can control these 
parameters. The conductor and performers might then 
create music by expressively acting within this framework 
over the performance of the piece. “Creators” and “users” 
may have analogous roles with respect to algorithms in 
other domains. Therefore, a set of general questions 
regarding computational creativity in real-time domains 
includes:  

• What commonalities exist in issues of interface design 
for real-time creative systems? We define “interfaces” 
broadly, including software, hardware, and programming 
languages. Issues of interest include the design of 
methodologies for characterizing and evaluating 
interfaces, designing interfaces for varying degrees of 
task specificity (e.g., designing an “instrument” that can 
be played in different styles and contexts, versus a 
“piece” that is played just one way), and designing 
interfaces for users with varying expertise. The 
International Conference on New Interfaces for Musical 
Expression, or NIME, treats this topic in the domain of 
music, but we know of no venue to explore this across 
disciplines.  

• What commonalities exist in the process of creating 
interactive, real-time experiences (analogous to the 
musical composition and software design processes for 

musical performance)? What tools and techniques do 
others use in their respective domains?  

• What fundamental HCI techniques may be of use in 
characterizing and designing algorithms for real-time 
interactive contexts? For example, to what extent might 
we talk about the affordances of algorithms in such 
contexts? Different algorithms may accomplish similar 
computational goals (e.g., solving an equation, 
producing a trained classifier) but afford different control 
parameters and interaction styles to a user, particularly in 
a creative, real-time context. Algorithmic distinctions 
may significantly impact the user experience regardless 
of any overlying user interface (whether that interface is 
a GUI, live-coding programming language, or other). For 
example, classifiers such as AdaBoost or support vector 
machines require a distinct training phase to produce a 
prediction rule, whereas “lazy” learners such as k-
nearest-neighbor do not. In our experience, when 
employing a classifier to learn a concept “on-the-fly,” 
this distinction can become important; it may be that a 
user prefers to use a lazy learner even at the expense of 
lower accuracy and slower predictions, in order to forego 
the wait for classifier training each time he or she adds 
more examples and observes classifier performance. 
That is, the user experience is impacted by aspects of 
algorithms that are not of concern to standard analysis 
(e.g., time complexity or accuracy bounds); this suggests 
that we might draw on HCI principles to analyze and 
augment standard algorithms, and even design new 
algorithms, for real-time interactive contexts. 

Real-time and On-the-Fly Learning 
On-the-fly, real-time learning is of particular interest to us 
for several reasons. As discussed in the previous section, it 
gives us a new perspective on standard algorithms, applied 
in a new context with constraints and goals very different 
from those the algorithm designers may have had in mind. 
An ideal on-the-fly, real-time learning interface might have 
the following properties:  

• The user has access to timely and meaningful feedback 
about a classifier’s performance (e.g., how long a 
training round might take, what sort of errors the 
classifier is likely to make), so that he/she may employ 
this information to make rational choices regarding the 
classifier and parameters. 

• The user has the ability to dynamically exercise 
meaningful control over the classification process, for 
example by specifying limits on training time in 
exchange for a tradeoff in accuracy, providing additional 
training data and re-weighting training examples to fine-
tune classifier performance, and providing on-line 
feedback on classifier performance, all using an interface 
that is appropriate for real-time use. 

• Both expert and novice users are able to interact 
effectively with the system, regardless of the extent of 
their machine learning knowledge. 



 

 

Some of the above properties could be supplied by novel 
user interfaces for visualization and control, some suggest 
enhancements to existing algorithms such as the addition of 
new parameters, and some may suggest new algorithms. 
Certain ideas are reflected in current theoretical work in 
machine learning (e.g., work on on-line and adaptive 
learning, or learning with concept drift), and we’d be 
excited to talk with participants with more traditional 
machine learning backgrounds who might see connections 
with current research. We would also like to engage with 
other machine learning practitioners working in creative 
domains who are confronting similar ideas, or who are 
interested in exploring them more deeply.  

Interfaces and Toolkits 
Finally, we have a general interest in interacting with others 
who develop software and hardware interfaces for real-
time, creative human-computer interactions. We will be 
happy to discuss and/or demonstrate hardware and software 
interfaces and toolkits that we have made for music 
performance. Furthermore, several questions may be very 
interesting to address in a cross-disciplinary manner, 
including: How are interfaces for real-time, creative tasks 
unique from non-real-time and non-creative tasks? To what 
extent can we use standard toolkits and methodologies, and 
to what extent must we create our own? How can interfaces 
best support expressivity? improvisation? How can 
interfaces support real-time creative collaboration among 
humans, in both performative contexts (such as the laptop 
orchestra) and offline contexts (such as collaborating to 
compose new pieces)? What role should learning and 
adaptation play, if any, in creating interfaces that are 
customized to individual users possessing different 
capabilities and levels of expertise? 

COLLABORATIONS AND INSPIRATIONS 
In summary, we welcome the opportunity to collaborate 
and brainstorm with people experimenting with real-time 
learning and/or live coding in other domains, people who 
love designing new learning algorithms for unique domains 
and seeing them applied, people who are interested in 
design aspects around live performance hardware and 
software, and people who like thinking deeply about HCI 
aspects of algorithms and machine learning in real-time, 
creative contexts. In turn, we offer ourselves as a group of 
people with extensive experience in computer music 
performance and composition, music interface design, and 
applied machine learning, and who have strong ties to the 
music-specific research communities in these areas. 
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