
26 Computer Music Journal

In its inaugural semester (Fall 2005), the Princeton 
Laptop Orchestra began as a seminar comprising 15 
freshmen undergraduates (3 women, 12 men), 15 
laptop and six- channel  speaker- array stations, and 
equipment for networking and transportation (see 
Trueman 2006; Trueman et al. 2007; and Small-
wood et al. in this issue of Computer Music Journal 
for details). The authors of this article served as the 
teaching corps but also participated in all other as-
pects of the ensemble. Software such as the ChucK 
programming language (Wang and Cook 2003), 
Max / MSP (Puckette 1991), the Audicle (Wang and 
Cook 2004b), miniAudicle (Salazar, Wang, and Cook 
2006), sndpeek (Misra, Wang, and Cook 2005), and 
hardware input devices and sensors comprised our 
teaching tools and platform. A second PLOrk 
seminar and ensemble was taught the following 
semester (Spring 2006) as an  upper- level undergrad-
uate elective in both the Department of Music and 
Department of Computer Science. A third seminar 
took place in Fall 2006, focusing on composing and 
programming for laptop orchestra.

All three courses required students to submit a 
short application. The students were selected on the 
basis of enthusiasm, thoughtfulness, and balance to 
the class; no explicit technical or musical back-
ground was required. All 15 students in Fall 2005 
entered the class with no prior programming experi-
ence but with great interest and varying backgrounds 
in music. The  Spring- semester students included 25 
undergraduate sophomores, juniors, and seniors, as 
well as graduate students with a wide range of 
technical experience and musical training. The Fall 
2006 class was a graduate seminar, consisting of 

Music and Computer Science graduate students and 
three undergraduate PLOrk “alumni.”

The PLOrk classroom takes place in two major 
formats and locations. There is the weekly class 
meeting at McAlpin Auditorium (see Figure 1), a 
rehearsal space shared with the traditional univer-
sity orchestra, choir, and other Music Department 
ensembles. Each PLOrk class is scheduled to last 3.5 
hours, at the beginning of which the members of the 
orchestra transport 15 sets of laptops, racks, hemi-
spherical speakers, mats, pillows, and sensors to the 
classroom, where they are connected, powered, and 
booted. Additionally, a wireless (and sometimes 
wired) local area network (LAN) is established, and 
video projection and sound amplifi cation are con-
nected from the teaching machine. In this class-
room mode, activities range from presentation of 
basic programming concepts, introduction and 
playing of compositions, individual and group stu-
dent presentations of assignments, and rehearsal as 
an ensemble. In addition, students are taught to 
troubleshoot any hardware or software problems 
that they may encounter with their station, and 
they are expected to learn how to set up and “tear 
down” quickly and effi ciently.

The other classroom venue is a smaller studio 
space (see Figure 2). It houses seven  ready- to- use 
PLOrk stations and a studio machine with a projec-
tor for teaching and hosting a professional  sound- 
editing environment. The PLOrk studio can hold an 
audience of up to 15 people. Weekly voluntary help 
sessions on topics such as programming in ChucK 
and Max / MSP take place here. In addition, students 
gain access to the space 24 hours a day to work on 
assignments, practice pieces, program, compose, 
“hang out,” ask questions, and get help from in-
structors and peers. Whereas topics presented in 
the larger rehearsal space tend to be high- level, this 

Ge Wang,* Dan Trueman,† Scott Smallwood,† 
and Perry R. Cook*†

*Department of Computer Science
Princeton University
Princeton, New Jersey 08544 USA
{gewang, prc}@cs.princeton.edu
†Princeton University
Department of Music
Woolworth Center
Princeton, New Jersey 08544 USA
{dan, skot}@music.princeton.edu

The Laptop Orchestra as 
Classroom

Computer Music Journal, 32:1, pp. 26–37, Spring 2008
© 2008 Massachusetts Institute of Technology.



 Wang et al. 27

the transfer beforehand to maximize class time for 
teaching and playing.

At 1:00 PM, students begin arriving to transport 
the stations from the studio space to the rehearsal 
hall. Setup begins in usual PLOrk formation (1–9, 
A–D, X–Y; see the companion article in this issue of 
Computer Music Journal). Ideally, the orchestra 
should be ready to rehearse by 1:30 PM. Students 
choose a PLOrk station and seat themselves on the 
mat and pillow (see Figure 3).

There is no formal class schedule. Typically, brief 
announcements are made, the day’s goals stated, 
and the orchestra dives into its activities, which can 
take three forms. First, the ensemble may rehearse a 
new or existing piece of music while working with 
the composer. Second, technical material may be 
presented, often on programming with ChucK or 
Max / MSP, and also on such topics as sensor map-
ping, audio synthesis, sound design, computer 
music performance, physical modeling, and signal 
processing. Third, students may present solo or 
group  works- in- progress for their assignments as 
well as independent work. This fi nal component 
also serves as an opportunity for group critique and 
allows students to showcase their work. New ideas 
can also be tested here using the full PLOrk confi gu-
ration, which is unavailable in the studio. Brief 
breaks and stretching sessions take place at transi-
tions between activities. Homework is usually 
assigned, ranging from  listen- and- response to 

smaller studio classroom provides the specifi cs and 
 hands- on examples needed to transfer concept into 
practice. If the  rehearsal- hall classroom setting rep-
resents the training ground of PLOrk, the studio 
classroom serves as the “trenches.”

The PLOrk Week at a Glance

A typical week in PLOrk, which begins on Thurs-
days, might follow the following pattern.

Thursday

In the morning, the instructors come into the studio 
and load data (programs, patches, sound fi les, scores) 
onto the main PLOrk “mothership” computer in 
preparation for class. All new data, including soft-
ware updates, new pieces, ChucK and Max / MSP 
programs / patches, student homework submissions, 
and other shared fi les are synchronized across all 
PLOrk laptops via CVS (Concurrent Versions Sys-
tem; see www.nongnu.org / cvs / ) over the PLOrk 
network. After this step, the laptops should then be 
identical in content, and ensemble members can log 
onto any PLOrk laptop (or PLOrktop) and expect the 
same data. Because the total size of new fi les can 
range into the gigabytes, this synchronization 
process can take signifi cant time (sometimes 1–2 
hours or more). Thus, it is important to complete 

Figure 1. PLOrk class in 
session. Here, the en-
semble is learning about 
real- time sound visualiza-
tion using sndpeek.

Figure 2. The PLOrk studio 
classroom houses multiple 
PLOrk stations with sen-
sors and provides  around- 
the- clock work, rehearsal, 
and PLOrk social space.



28 Computer Music Journal

usable strategies for projects. At other hours, this 
studio is open for development and rehearsal.

Wednesday

The “offi cial” deadline for PLOrk assignments is 
on the eve of the next class, or Wednesday night. 
Because the weekly fi le synchronization occurs 
Thursday morning, students are required to sign up 
for a Wednesday evening time slot to add and 
commit their work to the central PLOrk repository. 
One or more instructors are always on hand to 
assist. This evening is also sometimes used for 
sectionals to accommodate visiting composers 
arriving the night before their in- class rehearsals 
and resident composers working with groups within 
the ensemble.

This weekly routine provides stability to counter 
the “bombardment” of new information (which we 
typically race to prepare every week in response to 
the preceding week’s experiences) and new assign-
ments. Holding class on Thursday requires that 
assignments are due Wednesday night, which in 
turn means the students work on them mostly 
between Sunday night and Wednesday evening. 
Thursday’s class provides punctuation and a sense 
of weekly closure: everyone showcases their work 
and plays music together, and they also prepare for 
upcoming tasks.

Approaches and Tools for Teaching

There have been many efforts at integrating laptops 
and digital music in general into teaching situa-
tions, including the Behaviour Ensemble (artswork
.bathspa.ac.uk / labs / music / ), the Interactive Elec-
tronica Ensemble (www.mnstate.edu / music / 
electronica / electronica.html), the Lucid Dream 
Ensemble (Moorefi eld and Weeter 2004), the Digital 
Music Ensemble at the University of Michigan 
(www.music.umich.edu / current_students / perf
_opps / dme / ), and the Mobile performance Group at 
Stetson University (www.mattroberts.info / mpg / ), 
among others. In all of these ensembles, students 
create their own instruments and work together in 
largely improvised, collaborative contexts. The 

weekly or bi- weekly projects in Max / MSP and / or 
ChucK. Around 4:15 PM, the orchestra packs up 
and transports gear back up to the studios.

Friday–Sunday

Unless there is an upcoming performance, there 
usually are no planned activities for these three 
days. Most of the students have heavy course loads 
in addition to PLOrk, and this is a good time to 
catch up on their work and sleep and to brainstorm 
on the assignment before the next week of rehears-
als is underway. However, as due dates for PLOrk 
projects and performances draw near, the studio is 
often fi lled on the weekend by individuals and 
groups working on projects or rehearsing. A sign- up 
sheet coordinates studio access.

Monday and Tuesday

There is often a help session on one or both of these 
nights. Usually, it is a workshop session on ChucK 
or Max / MSP programming that addresses a current 
assignment. Programming examples are constructed 
and deconstructed line- by- line (or  object- by- object), 
and participants are encouraged to follow along on 
their laptops and to ask questions freely. Although 
these sessions are voluntary, they are usually well 
attended. They offer  hands- on expansions upon the 
concepts presented in class, transferring them into 

Figure 3. The ensemble is 
set up; students socialize 
before class.



 Wang et al. 29

following paragraphs remained throughout the 
various seminars.

Learning and Playing Pieces

As a new piece is prototyped, the orchestra learns it 
and provides feedback for the composer (see Figure 4). 
This involves working with the composer, learning 
an interface, playing the piece as an ensemble, and 
providing suggestions for improvement. Almost all 
PLOrk pieces debut during an initial class session 
and then undergo modifi cations and bug fi xes. As 
mentioned previously, the ensemble members are 
expected to have expert working knowledge of their 
instrument and be capable of debugging connec-
tions between laptop, rack, and speakers; they are 
also expected to understand the basic operation of 
ChucK and Max / MSP and to occasionally debug 
programs and patches. We liken this to the care and 
treatment of any musical instrument (making reeds, 
wrapping mallets, oiling valves, caring for bows, 
etc.). As the players learn their instrument, they 
become better at collaborating with the composers 
whose pieces they will ultimately perform by 
asking intelligent questions and making insightful 
suggestions.

Live Performance

PLOrk performances come in many different sizes 
and levels of interaction. Some require direct ma-
nipulation of hardware sensors or software inter-
faces to produce immediate sonic or musical 
gestures, whereas others call for  higher- level infl u-
ence over generative musical processes. The stu-
dents learn to play a wide spectrum of interfaces in 
live performance contexts and encounter a chal-
lenging diversity of aesthetic approaches, ranging 
from the “Deep Listening” techniques of Pauline 
Oliveros (Oliveros 2005) to the intensely rhythmic 
works of Zakir Hussain. Furthermore, students are 
asked to create their own compositions in various 
confi gurations, including solo pieces, small group 
pieces, or works for the full ensemble. In these 
cases, students must not only create a piece of 

design of PLOrk, with its individual, localized, 
hemispherical speakers, emphasizes the laptop as a 
musical instrument, and the sheer size of this 
collection of instruments forces a somewhat differ-
ent approach. We have relied on individual compos-
ers to envisage and realize new pieces for and with 
the group. In this approach, the composers build the 
instruments (largely  software- based), teach the 
students how to play them, and rehearse the group 
as a whole. In the process, the students learn deeply 
about the compositional, aesthetic, and technical 
approaches of many different composers. Many of 
the pieces are described in a companion to this 
article (Smallwood et al. 2008). As they develop 
skills, they are then also invited to develop their 
own pieces for the group or subsets of the group. 
(Composing for the entire group is often daunting, 
even for experienced composers.)

The PLOrk approach to teaching is experiential. 
This is essential, because our PLOrk classroom 
setting is a distinctly unique one, and so our ap-
proach has been to collaborate and engage with the 
students, providing experiences of learning through 
discovery. It is also worth noting that the focus of 
the three semesters greatly differed from each other. 
The fi rst PLOrk seminar, a freshman “fi rst- year-
 experience” seminar, embraced breadth that ranged 
from  computer- music synthesis and history to live 
performance and music creation. It also was our 
pilot class, and so it represented many unknowns. 
We felt it was important to give the students the 
understanding that we were embarking on a unique 
project together, and that their participation would 
highly infl uence the direction of PLOrk’s future. 
The Spring seminar course emphasized rehearsing 
and performing as an ensemble. This progression is 
perhaps not surprising, because we had only just 
begun to explore possibilities in composing for the 
laptop orchestra during the Fall. But by the middle 
of the Spring semester, we had over twenty pieces 
from a dozen composers and were scheduled to per-
form three concerts in April and May. In the Fall 
2006 semester, now armed with an arsenal of com-
pleted pieces, we combined teaching compositional 
and technical issues for laptop orchestra with re-
hearsals and live performances. Despite these differ-
ent approaches, the main themes described in the 



30 Computer Music Journal

Although we require that students learn enough 
programming to complete the assignments, we do not 
explicitly require that students achieve any particular 
level of profi ciency in programming during the se-
mester. We do, however, require that the end prod-
uct of sound, music, and performance be interesting, 
thoughtful, and in accordance to specifi cation. The 
programming language is to be used solely as a tool, 
a means to realize the tangible and rewarding goals 
of music creation, and not as an end in itself.

We teach (or at least expose) several concepts in 
programming, each in the context of making sound 
and music. Nearly everything is presented by ex-
ample, and each topic on a need- to- know (or “fun-
 to- know”) basis. Although it would be improbable 
(and counterproductive) to fully explore all of these 
topics in a single semester, we are able to present 
the fundamentals to the point where students can 
employ them in creating compositions and perfor-
mances. These concepts include basic imperative 
programming (e.g., types, variables, values, opera-
tors, and control structures); the importance of time 
in audio programming, including (non- preemptive) 
concurrent programming; and functions and proce-
dural abstraction (including  event- driven program-
ming, MIDI, Open Sound Control, networking, and 
 object- oriented programming).

Nearly every new concept we introduced was 
eagerly received by the students, who immediately 
saw how they might use it to enhance their music 
programs or to program things they previously 
could not. As mentioned earlier, the primary lan-

music but also negotiate issues of live performance 
and engagement with players and audience. Owing 
to the overwhelming possibilities offered by com-
puters and by the scale of the PLOrk ensemble, the 
starting space for crafting such a performance can 
be somewhat nebulous. This space must be navi-
gated, and decisions about modes and levels of 
inter activity between human and machine must be 
considered. In this sense, PLOrk provides a unique 
laboratory where students learn to craft both 
musical ideas and performances using  computer- 
mediated technologies.

Programming

PLOrk does not assume any programming or techni-
cal background of its members. Some students enter 
the class with experience in C, Java, or another 
programming language, whereas others enroll with 
little or no prior programming experience. Part of 
the PLOrk approach has been to teach aspects of 
software development in order to (1) enable stu-
dents to create sound and music (see Figure 5), 
(2) provide insight into how a PLOrk piece is as-
sembled, and (3) teach the basic concepts of computer 
music. We cannot overemphasize the importance of 
the possibility of making music in motivating a 
student to learn how to program. The ultimate goal 
is to arm the student with practical know- how for 
realizing sonic and musical ideas using a computer, 
and crafting live performances on top of that.

Figure 4. PLOrk in- class 
rehearsal with Zakir 
Hussain in preparation for 
PLahara by Dan Trueman, 
So Percussion, and Zakir 
Hussain.



 Wang et al. 31

 event- driven processing, and provisions for code to 
be written “on- the- fl y” (Wang and Cook 2004a). It is 
 cross- platform and freely available, which allow 
students to work on their own machines if desired. 
Furthermore, the recently released Small Musically 
Expressive Laptop Toolkit (SMELT) provides addi-
tional resources in to quickly learn about and proto-
type new  laptop- based physical instruments in 
ChucK (Fiebrink, Wang, and Cook 2007).

ChucK has proven to be a successful and interest-
ing tool for teaching programming, audio / music 
synthesis, instrument building, and  computer- 
music performance in PLOrk. Owing to its clear 
grammar and precise delineation of time and 
parallelism, the students are able to learn ChucK 

guages we utilize are ChucK and Max / MSP. We 
have found these two environments to be good 
partners for teaching programming.

ChucK is a  Princeton- developed programming 
language for real- time audio synthesis, composi-
tion, and performance. It is an ongoing, open- source 
research experiment in designing a  computer- music 
language completely “from the  ground- up.” A main 
focus of the design is code readability and fl exible 
control of time and parallelism; readability and 
clarity trumps performance and conciseness. Its 
main features include the ChucK operator (=>), the 
unifi cation of  audio- rate,  control- rate, and musical 
timing into a single precise mechanism, a straightfor-
ward concurrent programming model based on time, 

Figure 5. Programming in 
Studio B. Here, Michael 
explains the inner work-
ings of his software, which 
synchronizes multiple 
hosts for sound synthesis 

as part of a trio perfor-
mance created with 
Brandon and Charlie. The 
software was implemented 
in ChucK.



32 Computer Music Journal

techniques. The abstractions prove to be important 
pedagogical tools for teaching about real- time 
controller mapping and PLOrk meta- instrument 
construction (see Figure 6). For instance, one suite 
of abstractions allows the user to easily grab a con-
trol signal (from any known PLOrk controller, in-
cluding  Teabox- based sensors), scale that input to 
an appropriate range, “non- linearize” it as needed 
using both symmetrical and asymmetrical fi lters, 
smooth it over time, and then connect it to other 
Max / MSP objects.

Other abstractions include similar fi lters for but-
tons, a wrapper for the Max / MSP pattrstorage 
that attempts to allow users to easily save and recall 
the state of their patches, and network abstractions.

One of the advantages of these abstractions is that 
they allow students with only a basic introduction 
to Max / MSP programming to quickly assemble and 
experiment with instrument building, focusing 
their attention on the “feel” of the mappings and 
features of the synthesis / signal- processing tech-
nique with which they are working. Those who are 
interested can delve further into the programming 
techniques behind these abstractions, which will 
reveal not only Max / MSP programming formalisms, 
but also Javascript and Java beneath the surface.

As an example, we present an early assignment in 
which we asked students to build a generative drum 
machine using ChucK, employing the timing and 
concurrency mechanisms in the language, and to 
learn to perform it on- the- fl y. We were pleased to 
discover the students (most of whom had no prior 
programming experience at the time) delivered 
quality works that demonstrated both technical 
comprehension and creative zeal. Additional assign-
ments included “PLOrk chamber compositions and 
performances” and “designing an ambient sound-
scape,” each open to interpretation and yet designed 
to make use of newly introduced technical concepts.

PLOrk Assignment: Build a Drum Machine and 
Perform It

As a case study, we reproduce in Table 1 the specifi -
cations for the Drum Machine assignment and 
describe various duo / trio performances created by 
the students.

programming for sound synthesis and composition 
quickly, without prior programming experience.

Programming in Max / MSP can be powerfully 
rewarding but also deceptively diffi cult. At fi rst, 
students might get the impression that it is rela-
tively easy compared to text- based coding, but they 
usually encounter serious diffi culties quite quickly. 
Part of this is due to the large vocabulary in Max. 
Another well- known challenge centers on order of 
operation (the “trigger” problem; see Puckette 
1991). Finally, the  control- rate / audio- rate distinc-
tion typically requires some time to understand. 
Because we do not have time in our curriculum to 
offer a full year of Max / MSP programming tech-
niques, we rely heavily on prewritten abstractions 
so students can quickly learn how to create instru-
ments by connecting control data to sound processes. 
They are introduced to Max / MSP programming, 
and some continue on to learn more advanced 

Figure 6. Examples of a 
PLOrk mapping abstrac-
tion with different settings. 
The user chooses the 
controller (the trackpad, in 
this case) and a feature of 
that instrument (which 
might be simple, like 

“x- position” or more 
abstracted, like angular 
velocity). “Warping” 
values of 1 leave the signal 
linear. Asymmetrical 
warping creates 
 exponential- like curves, 
allowing the user to 

emphasize one extreme or 
another, while symmetri-
cal warping allows the user 
to emphasize the middle or 
the edges. Both kinds of 
warping can be combined.



 Wang et al. 33

sensors, processing of live acoustic instruments 
(including voice), and networking in their composi-
tions and performances. The trio of Ken, Jason, and 
Matt mapped WACOM graphics tablets, TriggerFin-
ger MIDI drum pads, and  pressure- sensing panels to 
 sound- synthesis algorithms in ChucK and Max / MSP 
(see Figure 7). The trio of Anna, Zach, and Jason 
created the PLOrk- ifi ed Cello (which processed 
Anna’s cello in real- time using Max / MSP), the 
“Scrub Voice Synth,” various “soundscapes,” and 
an interactive drum machine. William and R.W.’s 
duo created a musical skit that involved playing an 
infl atable (or “air”) guitar with a  sensor- augmented 
glove, along with processed vocals. Janet, Brian, and 
Theo used light sensors to trigger sound samples 
with cups and hand movements. Janet also net-
worked eleven PLOrk stations using ChucK and 
OSC (Wright, Freed, and Momeni 2003), and she con-
trolled them independently from two MIDI key-
boards located at the “command center” to create a 
distributed performance system. Michael, Brandon, 
and Charlie made use of networking and created a 
performance that involved on- the- fl y ChucK pro-
gramming and featured a  tablet- based blues solo.

Listening

In addition to programming, weekly assignments 
sometimes include a listening component that asks 
students to experience one or more audio / video 
recordings and to write a brief response to each.

Results and Evaluation

One of our observations in teaching both Max / MSP 
and ChucK in the context of PLOrk was that, con-
trary to generally accepted wisdom, the text- based 
approach of ChucK was more easily accessible than 
the visual paradigm of Max / MSP; many of the stu-
dents adopted ChucK as their primary language, and 
there was general resistance to “digging further” 
into Max / MSP. This was not universally true—
some students did in the end prefer programming in 
Max / MSP—but the majority of students seemed to 
fi nd the ChucK language easier to learn and use. We 

Student Works

As students became increasingly profi cient in pro-
gramming, they were able to employ input devices / 

Table 1. PLork Drum Machine Assignment

Deliverables:

•  create a drum machine using multiple ChucK sub-
 programs (or shreds)

•  practice playing the drum machine using on- the- fl y 
programming commands (+, - , =, —, ^, etc.); perform it 
in class

•  write a short README text fi le that describes what you 
did and any interesting problems or challenges you 
encountered.

What to do:

•  experiment with playing otf_*.ck and e*.ck ex-
amples using on- the- fl y programming commands

•  fi nd or record drum samples (or other percussive 
sounds)

•  each sound should contain only a single strike (and not 
a drum loop); you may wish to edit them slightly (using 
Audacity or another sound editor)

•  this need not take a long time, but do pay attention to 
individual and collective feel of the sounds, as they will 
make a big difference in the fi nal result

•  put these fi les in a folder (your chuck fi les will refer to 
these fi les); if possible, credit the source of the sample 
in your README.

•  make a ChucK sub- program (shred) to control each 
drum sound (feel free to base on examples shown in 
class or during help session)

•  choose a base tempo that all shreds agree on (e.g., 
.5::second => T;)

•  synchronize to this period at top of each sub- program 
(e.g., T -  (now % T) => now;)

•  in certain cases, it might make sense to control more 
than one drum sound in a shred (like if two sounds 
always go together). In general, however, you should 
split up the drum machine so that you can indepen-
dently control each component.

•  you may add additional parts (drone, melody, bass line, 
etc) if you like, but that is not required—focus on 
getting the percussive parts done fi rst.

•  practice playing the drum machine you created using 
on- the- fl y programming commands.

•  have fun!



34 Computer Music Journal

tion of enough familiarity to “poke around” in a 
Max / MSP patch and make sense of it.

As mentioned earlier, nearly all students came 
into the Fall 2005 class without programming 
experience but had, by mid term, internalized 
ChucK to the point they could comfortably focus 
on creating compositions and performances. The 
language was straightforward to learn, and it proved 
effective in teaching programming concepts as well 
as sound synthesis. In fact, the two reinforced each 
other. Perhaps having immediately perceivable 
audio / musical feedback when programming al-
lowed the student to more easily focus on the task 
at hand, instead of simply learning programming 
“for programming’s sake.”

should qualify these observations by noting that we 
may simply not yet have a compelling approach to 
teaching Max / MSP in the context of PLOrk, and the 
excitement around a new language like ChucK, 
especially one being developed here on campus and 
taught by its creators, undoubtedly had something 
to do with its appeal. Also, although the abstrac-
tions were defi nitely effective in allowing students 
to quickly get “up and running” while getting a 
taste of Max, they also tended to create a certain 
amount of confusion as to what exactly constitutes 
Max / MSP: are the abstractions part of the language, 
or were they built with Max / MSP? Perhaps what 
was best accomplished here was an exposure to the 
graphical programming paradigm and the acquisi-

Figure 7.  Pressure- sensing 
panels (bottom left) and 
MIDI drum pad (bottom 
right) are mapped using 
ChucK and Max / MSP as 

part of a trio performance 
created by students by 
Ken, Jason, and Matt in the 
freshman seminar.



 Wang et al. 35

It was so exciting to fi gure out how to control 
the exact rhythm produced by the shred [ChucK 
process], and I started working out rhythmic 
patterns on scrap paper in the form of music 
notation and then transferring it mathemati-
cally to the shred composition itself.

I really like the on- the- fl y command system 
as well. It may have driven my roommate crazy, 
but I was defi nitely jamming the whole way 
through. The only real problem with this 
assignment was knowing when to stop and get 
on with the rest of my work. This is so much 
better than memorizing French verbs.

—Anna, Fall 2005

Toward a Naturally Integrated Classroom

One of the most exciting promises being fulfi lled by 
PLOrk as a teaching resource is the idea of moving 
away from strictly  studio- oriented computer music 
courses, instead focusing on live performance. For 
example, traditionally in computer music courses 
we focus on techniques and software for construct-
ing music in the studio and playing these back in 
concert. With the PLOrk classroom, we are able to 
truly integrate live performance into such courses, 
and we can emphasize crafting performances by 
providing meta- instrument platforms on which 
students can test out their ideas (see Figure 8). Each 
PLOrk meta- instrument, with its localized hemi-
spherical speaker, has an  instrument- like sonic 
presence that invites students to experiment with 
sound both individually and with others while 
retaining their own sense of identity (i.e., they are 
not being “swallowed” by a traditional sound rein-
forcement system).

Programming in the service of  music- making is a 
powerful motivator for learning and experimenta-
tion. It emphasizes immediate sonic feedback, 
which can greatly encourage inquiry about how to 
make and change the sound. ChucK syntax and 
semantics enable students to learn quickly without 
sacrifi cing or compromising key concepts. Max / MSP 
and our abstractions provide useful tools for learn-
ing about and creating real- time controller map-
pings for new PLOrk meta- instruments. But PLOrk 

We also noticed some specifi c characteristics of 
ChucK that lend themselves to teaching. For 
example, the ChucK operator (=>) removes confu-
sion between assignment (e.g., =) and comparison 
(e.g., ==), which seems to often lead to unnecessary 
confusion in introductory programming courses 
that use C++ or Java. In fact, there is no = operator 
in ChucK, as all assignments are carried out by =>. 
Additionally, the left- to- right semantic of => 
promotes a strong sense of order of operations.

Traditionally, concurrent programming is rarely 
taught in introductory programming courses, often 
reserved for  higher- level software design or operat-
ing systems classes, owing to the diffi culties com-
monly associated with programming threads 
(Birrell 1989). However, we believe it can be bene-
fi cial to introduce certain types of concurrency 
early because it is highly expressive (especially for 
sound and music) and also reinforces the notion of 
interactive processes. ChucK’s concurrent pro-
gramming model is well- suited for this purpose 
because it is non- preemptive and based on time. 
This allows students to benefi t from the expressive-
ness of concurrent programming (parallel program 
fl ow can be developed independently) without the 
unnecessary complexity associated with pre-
 emptive concurrency (e.g., indeterminism, race 
conditions, and dead- lock). Furthermore, simulta-
neities in music / sound can be directly modeled, 
providing the incentive to learn concurrent pro-
gramming in the fi rst place. Similarly, manipulation 
of time to generate sound is a useful teaching mech-
anism for representing the relationship between 
time and sound, and for clearly delineating synthe-
sis algorithms.

We conclude this section with a snippet of stu-
dent feedback, quoted from a README docu-
ment submitted as part of the Drum Machine 
assignment:

However, when everything worked the way it 
was supposed to, when my spontaneous ar-
rangement of computer lingo transformed into 
a musical composition, it was a truly amazing 
experience. The ability to control duration and 
pitch with loops, integers, and frequency nota-
tion sent me on a serious power trip. . . .



36 Computer Music Journal

References

Birrell, A. D. 1989. “An Introduction to Programming 
with Threads.” Technical Report SRC- 035, Digital 
Equipment Corporation.

Fiebrink, R., G. Wang, and P. Cook. 2007. “Don’t For-
get the Laptop: Using Native Input Capabilities for 
Expressive Musical Control.” Proceedings of the 2007 
New Interfaces for Musical Expression Conference. 
New York: Association for Computing Machinery, 
pp. 164–167.

Misra, A., G. Wang, and P. R. Cook. 2005. “SndTools: 
Real- time Audio DSP and 3D Visualization” Pro-
ceedings of the 2005 International Computer Music 
Conference. San Francisco, California: International 
Computer Music Association, pp. 278–281.

performers learn more than programming, interfac-
ing, and studio techniques; they also learn how to 
be part of a group, and they have to practice, indi-
vidually and in small groups. They learn to be better 
musicians.

Our hope for the PLOrk classroom and other 
similar learning environments is to create a truly 
integrated, interdisciplinary experience, where the 
mixing of ideas from different fi elds happens natu-
rally in the service of a common goal, such as  music- 
making in PLOrk. Our experiences these past two 
years have been encouraging, and we plan to further 
solidify PLOrk’s place in our curriculum and to 
investigate new pedagogical practices and para-
digms in the  laptop- orchestra classroom.

Figure 8. Anna demon-
strates two meta- 
instruments she has 
created. On the right is the 
PLOrk- ifi ed cello (audio 
processed in Max / MSP; 

parameters controlled via 
MIDI foot pedals), and on 
the left is a “soundscape 
generator” (implemented 
in Max / MSP and ChucK, 
controlled via MIDI drum 

pad). This encapsulates a 
wide range of topics from 
musical performance, 
programming, controller 
mapping, and sound 
synthesis.



 Wang et al. 37

Wang, G., and P. Cook. 2003. “ChucK: A Concurrent, On-
 the- Fly, Audio Programming Language.” Proceedings 
of the 2003 International Computer Music Conference. 
San Francisco, California: International Computer 
Music Association, pp. 219–226.

Wang, G., and P. R. Cook. 2004a. “On- the- Fly Program-
ming: Using Code as an Expressive Musical Instru-
ment.” Proceedings of the 2004 International 
Conference on New Interfaces for Musical Expression. 
New York: Association for Computing Machinery, 
pp. 153–160.

Wang, G., and P. Cook. 2004b. “The Audicle: A  Context- 
Sensitive, On- the- Fly Audio Programming Environ / 
Mentality.” Proceedings of the 2004 International 
Computer Music Conference. San Francisco, Cali-
fornia: International Computer Music Association, 
pp. 256–263.

Wright, M., A. Freed, and A. Momeni. 2003. “OpenSound 
Control: State of the Art 2003.” Proceedings of the 
2004 International Conference on New Interfaces for 
Musical Expression. New York: Association for Com-
puting Machinery, pp. 153–159.

Moorefi eld, V., and J. Weeter. 2004. “The Lucid Dream 
Ensemble: A Laboratory of Discovery in the Age of 
Convergence.” Organised Sound 9(3):271–281.

Oliveros, P. 2005. Deep Listening: A Composer’s Sound 
Practice. New York: iUniverse Publications.

Puckette, M. 1991. “Combining Event and Signal Pro-
cessing in the Max Graphical Programming Environ-
ment.” Computer Music Journal 15(3):41–49.

Salazar, S., G. Wang, and P. R. Cook. 2006. “miniAudicle 
and ChucK Shell: New Interfaces for ChucK Develop-
ment and Performance.” Proceedings of the 2006 Inter-
national Computer Music Conference. New Orleans, 
Louisiana: International Computer Music Association, 
pp. 63–66.

Smallwood, S., D. Trueman, P. Cook, and G. Wang. 2008. 
“Composing for Laptop Orchestra.” Computer Music 
Journal 32(1):9–25.

Trueman, D. 2007. “Why a Laptop Orchestra?” Organised 
Sound 12(2):171–179.

Trueman, D., et al. 2006. “PLOrk: The Princeton Laptop 
Orchestra, Year 1.” Proceedings of the 2006 Interna-
tional Computer Music Conference. New Orleans, 
Louisiana: International Computer Music Association, 
pp. 443–450.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Sheridan distiller settings. No subset fonts.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


